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Introduction

Context

U to reduce GHG emissions (HD represents ¥4 of EU
road transport emissions)

U to increase competitiveness of transportation by
trucks (fuel=28% of the total operating cost of the

truck)

U Waste heat valorization is a promising solution

U Even with a large engine efficiency, 50-60% of fuel

O Reduce fuel consumption is necessary

O How could we reduce fuel consumption?

energy is lost in waste heat

ﬂ Fuel energy distribution on a commercial vehicle
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Introduction
Rankine cycle systems

O Among the WHR techniques, the Rankine cycle is one of the most
promising ones.
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O However, R&D activities are still necessary to find the most appropriate
architecture (working fluid, heat source/sink, expansion machine, etc.) in
order to reach an acceptable economical profitability and to increase
reliability



NoWaste project
Consortium

O FP7 project
O Duration: 42 months / Start: October 2011
O Coordinator;: CRF

O Main partners:
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NoWaste project
Objectives and challenges

O Develop and validate 2 ORC-based waste heat recovery systems for HD trucks.

O Challenges of the NoWaste project:

U New components should be compliant with automotive constraints (weight,
cost)

U System should be compliant with incoming regulations about GHG emissions
(e.g. F-gas regulation)

U Impact on vehicle architecture and performance should be limited (for instance
cooling drag, back pressure, etc.)

U Optimize the energy management system (production/storage/use of energy)



NoWaste project
Project organization

WP 1 - System Concept

* Identify possible applications and basic WHR system architectures

* Theoretical investigation phase on technologies for heat recover

* System definition, detailed numerical simulation modeling, energy management

Optimization Loop

WP 2 - System Components design and realisation
* Components and detailed control strategy development
* Components testing

1
WP 3 — Heat Re-Use unit prototyping and bench validation
* Test ng unit development
* Tuning of control strategy
* Performance evaluation
M i I
WP 4 - Demonstrator Vehicle realisation and validation
* System design for on board integration
* On board evaluation of waste heat recovery system
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Architectures of ORC systems
CRF application

A Trade off between impact on overall
vehicle efficiency and
simplicity/cost/volume/weight

A Heat source: Exhaust gas only (no
EGR): lower temperature heat source

A Heat sink: low temperature cooling
circuit (capacity limited to 35 kW)

A Electrical output power

A No flammable fluid (security):
0 R245fa

0 R1233zd: GWP<5 and potentially better
performance



Architectures of ORC systems

CRF application

Low Temp. Radiator

Components:

A Expander: Axial impulse turbine +
reducer + generator: electrical output
power

A Boiler: stainless steel plate-fin heat
exchanger

A Condenser: aluminum plate heat
exchanger

A Internal gear pump



Architectures of ORC systems
CRF application

Performance estimation @ design point

Motor Actuator
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Simulation Results

" Turbine Power 2,8kWe
“I Pump Power 0,6kWe
' Net power output 2,2
. ORC Efficiency 6%
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Architectures of ORC systems
Volvo application

A Trade off between impact on overall
vehicle efficiency and
simplicity/cost/volume/weight

i

EXHAUST

A Heat source:

o0 Exhaust gas + EGR cooler (higher
temperature heat source)

o Series or parallel configuration

o0 Recirculated gas temperature low
enough

A Heat sink: low temperature coolant circuit
(60-70°C)

A Mechanical output power
A Working fluid: ethanol

0 Better performance

o Water-ethanol mixture (reduced flammability and corrosivity) 11



Architectures of ORC systems
Volvo application
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Source: V. Grelet, T. Reiche, V. Lemort, M. Nadri, P. Dufour, Transient performance
evaluation of waste heat recovery Rankine cycle based system for heavy duty trucks.
Applied Energy, In press

0 ExhaustOnly EGR Only Serial Parallel
Rankine cycle arrangement

A EGR cooler as preheater (serial configuration of the heat sources)
o Lower net power production than serial configuration
o But lower complexity and cost (less valves) and better cooling down of EGR gases 12



Architectures of ORC systems
Volvo application

Components:
A Expander: turbine + reducer + engine mechanical coupling

A EGR Boiler: brazed stainless steel heat exchanger with a concept similar
as the EGR cooler

A Tailpipe boiler: brazed stainless steel (counter flow) plate heat exchanger

A Condenser: brazed stainless steel (plate/plate counter flow) heat
exchanger

A External gear pump

13



N L.
Architectures of ORC systems
Components specifications

Component Technical boundary conditions VOLVO CRF
EGR boiler Heat flow range (kW) 15-45 -
EGR inlet temperature (°C) 400-500 -
Working fluid pressure (bar) 25-40 -
Working fluid inlet temperature (°C) 65 -
Exhaust boiler Heat flow range (kW) 25-60 30-50
Exhaust inlet temperature (°C) 320-350 200-300
Exhaust mass flow (kg/s) 0.18-0.25 0.2-0.3
Working fluid inlet temperature (°C) 65-215 63-73
Condenser Heat flow range (kW) 50-85 25-45
Working fluid pressure (bar) 1 5-7
Working fluid inlet temperature (°C) 85-180 100-110
Coolant inlet temperature (°C) 50-70 50-70
Coolant mass flow (kg/s) 1-5 0.6-1
Expander Inlet pressure (bar) 25-40 25-35
Inlet temperature (°C) 200-280 140-160
Feed pump Inlet pressure (bar) 1 5-7
Inlet temperature (°C) 70-80 60-70
Working fluid inlet mass flow (kg/s) 0.04-0.08 0.1-0.2
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Experimental characterization of prototypes
CRF application

A Tests in steady-state engine regime

APurpose: Check suppliersd specificat,
simulation models improvement

A All components operated as envisioned, except the turbine
whose efficiency is lower than expected.
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Experimental characterization of prototypes

CRF application

Measured performance at different engine load levels:

Parameter

Engine load 70%

Engine load 80%

Engine load 90%

Engine load 100%

Evaporator heat recovery [kW]
Condenser heat rejection [kW]
Pump power absorption [kW]
Electricity generation [kW]
Mass flow rate [kg/s]

ORC global efficiency

384
36.2
0.27
1.2
0.15
24

42.6
40.8
0.32
1.6
0.16
3

48
46
0.38

0.18
33

545
51.8
0.43
2.5
0.19
3.8
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Experimental characterization of prototypes
Volvo application

A Tests in steady-state engine regime
A Turbine replaced by a representative orifice.

A Heat ratio = fraction of heat recovered by the working fluid compared to
the total heat loss of EGR and exhaust gases
o =>indication of ambient losses (15-25% in steady-state)

o Insulation would have a non negligible impact on weight and cost
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Experimental characterization of prototypes
Volvo application

A Extrapolation of performance with a turbine total efficiency of 65%
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0 => average efficiency estimation of 10% over a relatively wide range of
engine working points

o Performance can be i ncreased by i mprovi
decreasing condensing pressure .
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Economical analysis
Production cost breakdown

0 CREF system

U Smaller, more reliable, less
efficient

U 2300 - 3000 EUR

0 Volvo system
U More complex, more efficient
t 2300 - 3000 EUR

Expander and evaporator are the main
drivers of the total cost.
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